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Abstract

Critical open source software systems undergo significant valida-

tion in the form of lengthy fuzz campaigns. The fuzz campaigns

typically conduct a biased random search over the domain of pro-

gram inputs, to find inputs which crash the software system. Such

fuzzing is useful to enhance the security of software systems in

general since even closed source software may use open-source

components. Hence testing open source software is of paramount

importance. Currently OSS-Fuzz is the most significant and widely

used infra-structure for continuous validation of open source sys-

tems. Unfortunately even though OSS-Fuzz has identified more

than 13,000 vulnerabilities across 1000 or more software projects,

the detected vulnerabilities may remain unpatched, as vulnerability

fixing is often manual in practice.

In this work, we explore the use of Large Language Model (LLM)

agents for automated vulnerability remediation. To our knowledge,

this is the first systematic study of LLM-assisted security patching

on OSS-Fuzz. We adapt the AutoCodeRover agent, which typically

fixes bugs from issue descriptions, to the security domain. Instead

of issue text, our agent extracts vulnerability-relevant code ele-

ments through the execution of the exploit input, and augments

patch generation with static typing information. We evaluate our

agent in two settings. On a benchmark of historical vulnerabili-

ties detected by OSS-Fuzz, our agent generates plausible patches

for 61% to 72% of the cases. We then conduct the first evaluation

of LLM agents on real-world, unpatched vulnerabilities reported

by OSS-Fuzz. In this setting, the agent performs comparably to its

benchmark results. Moreover, several agent-generated patches have

already been merged into widely used open-source projects. These

results demonstrate both the practicality of automated vulnerability

remediation with LLM agents, and the feasibility of an end-to-end

software protection cycle from detection to repair.

CCS Concepts

• Software and its engineering → Automatic programming;

Software evolution; Software maintenance tools; • Security

and privacy→ Software security engineering.

This work is licensed under a Creative Commons Attribution 4.0 International License.

ICSE-SEIP ’26, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2426-8/2026/04

https://doi.org/10.1145/3786583.3786880

Keywords

Software Security, Program Repair, AI Agents, OSS-Fuzz

ACM Reference Format:

Yuntong Zhang, Jiawei Wang, Dominic Berzin, Martin Mirchev, and Ab-

hik Roychoudhury. 2026. Fixing Security Vulnerabilities with Agentic AI

in OSS-Fuzz. In 2026 IEEE/ACM 48th International Conference on Software

Engineering (ICSE-SEIP ’26), April 12–18, 2026, Rio de Janeiro, Brazil. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3786583.3786880

1 Introduction

Security vulnerabilities are one of the major threats to modern

software systems. Once exploited by malicious attackers, security

vulnerabilities can cause significant damage to the software and

its users, incurring financial loss, data breaches, and more. In 2023,

30,927 new Common Vulnerabilities and Exposures (CVEs) are

recorded by the National Vulnerability Database (NVD), and half of

these vulnerabilities were classified as high or critical severity [39].

The number of new CVEs has increased by 17% compared to the

previous year, underscoring the accelerated pace of vulnerability

detection and the critical need for timely remediation. The recent

advancement in automatic programming with generative AI could

further exacerbate the security issues, since some parts of the appli-

cation code could come from Large Language Models (LLMs) with

little security assurance.

To safeguard the software systems, researchers and practitioners

have made advances in both vulnerability detection and remedia-

tion. To detect security vulnerabilities before they are discovered/ex-

ploited by attackers, various techniques from static analysis [15, 38]

to fuzzing [35, 47] have been developed and also adopted in the

industry. Static analysis techniques can be applied to detect a wide

range of vulnerabilities. However, they are known to report false-

positive warnings since they are often based on abstraction and

conservative approximation of the program semantics [25]. Fuzzing,

on the other hand, employs a biased random search in the pro-

gram’s input space and dynamically executes the program. The

dynamic nature of fuzzing ensures that a reported bug is a true

positive. Fuzzing has been employed by major software compa-

nies to continuously scan for vulnerabilities in their development

process [7, 10]. Google’s OSS-Fuzz, announced in 2016, provides

continuous fuzzing for various core open-source software [2]. As

of May 2025, OSS-Fuzz has identified over 13,000 vulnerabilities

across 1,000 projects [33].

While vulnerability detection techniques like fuzzing have shown

to be both mature and effective, detection is only the first step
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in comprehensive software protection. A detected bug should be

patched as soon as possible to reduce the time of exposure and

the risk of being exploited. A previous study in 2021 has shown

that the median time-to-fix (i.e. time from bug reporting to patch

verification) to be 5.3 days for bugs detected by OSS-Fuzz [11], and

10% of the reported bugs are not fixed within the 90-day disclosure

deadline. The rising number of detected vulnerabilities in recent

years may require developers to invest even more time and effort in

manually patching them. There is an urgent need for automated vul-

nerability remediation in continuous fuzzing pipelines to both ease

the developers’ workload and minimize the window of exposure.

Recent advancements in generative AI and LLM agents have

shown promise in autonomous vulnerability remediation in pro-

grams [37, 44, 45, 49]. These LLM agents are designed for general

software engineering tasks, including bug fixing and feature de-

velopment. They operate in real-world scenarios where tasks are

described by users in natural language. Using the task description

and the software codebase as inputs, the agents generate code mod-

ification suggestions to fulfill the specified requirements. Since

repairing security vulnerabilities is a specialized software engi-

neering task, we hypothesize that with appropriate adaptation,

general-purpose LLM agents for software engineering can be re-

purposed for this task. These repurposed agents can potentially be

integrated into existing vulnerability detection pipelines such as

fuzzing, where they can provide the remediation after detection

and complete the software protection cycle.

CodeRover-S. In this paper, we present a large scale real-world

study on using LLM agents for security vulnerability repair. To

enhance the realism of our effort, we use as dataset the OSS-Fuzz

projects, which seek to enhance the state of practice of open source

security [33]. We repurposed the LLM agent AutoCodeRover [37,

49] to repair security vulnerabilities, and implemented a version

named CodeRover-S (i.e. AutoCodeRover for security). With the

vulnerability report and an exploit input produced by a fuzzing

campaign, CodeRover-S autonomously generates patches that fix

the detected vulnerability. In the process of adapting LLM agents

for vulnerability repair, we identified that one challenge was the

insufficient information contained in the auto-generated vulnerabil-

ity report. Unlike human-written issue report for general software

engineering tasks, vulnerability reports are often auto-generated by

the fuzzer and only contain information like the bug type and crash

stacktrace. To enrich the context for vulnerability repair, we extract

dynamic call graph information from the exploit input found by

fuzzing, which is then used to augment the report generated by the

fuzzer. In addition, we perform a type-based analysis at the program

locations identified as faulty by the agent, and use the additional

type information to augment the patch generation process.

We evaluate the efficacy of CodeRover-S in both historical vul-

nerabilities and unpatched vulnerabilities reported by OSS-Fuzz.

Each detected vulnerability comes with an exploit input that re-

sulted in a crash from sanitizers (e.g., AddressSanitizer [19], Memo-

rySanitizer [20]), and the crash report generated by the sanitizer. On

588 real-world historical vulnerabilities from a previously curated

dataset [31], CodeRover-S can repair 61.1% of these vulnerabili-

ties by resolving the crash from the exploit input, using o3-mini

as the backend LLM. When switching to gemini-2.5-flash as the

backend LLM, the efficacy further improved to 71.8%. Our ablation

study shows that the newly introduced features such as the dy-

namic and static analysis augmentation improved the efficacy of

CodeRover-S by 5.1 percentage points. Beyond the benchmark,

we also evaluated CodeRover-S in repairing unpatched real-world

vulnerabilities reported by OSS-Fuzz in open-source projects. We

curated a dataset of 45 vulnerabilities that have been reported and

disclosed to the public, but not yet patched by the open-source

project maintainers. CodeRover-S generated plausible patches for

73.3% of the unpatched vulnerabilities, demonstrating that its effi-

cacy can generalize from benchmarks to real-world deployment.We

further conducted manual correctness analysis of the patches and

submitted several patches to their corresponding project reposito-

ries. At the time of writing, five patches have already been merged

into four different projects.

In summary, our contributions are as follows:

• We explore the feasibility of adapting general-purpose LLM pro-

gramming agents for the repair of security vulnerabilities. We

integrate call graph information and type-based analysis to pro-

vide richer context for LLM agent-based vulnerability repair, re-

sulting in improved patch quality. Our approach is implemented

as a new agent CodeRover-S which is specialized for security

vulnerability repair.

• We conduct an empirical study on the use of LLM agents to repair

real-world security vulnerabilities identified by the industrial

fuzzing service OSS-Fuzz. Our findings on existing benchmarks

indicate that leveraging LLM agents is a promising approach for

security vulnerability remediation.

• We conduct the first study of using LLM agents to repair un-

patched vulnerabilities reported by OSS-Fuzz. Our results indi-

cate that LLM agents’ efficacy in producing plausible patches

generalizes beyond benchmark instances to unpatched vulnera-

bilities in the wild. Furthermore, we demonstrate the potential of

integrating agent-generated patches into software projects and

deploying agent-based vulnerability remediation.

2 Background

We discuss background on the OSS-Fuzz project and LLM agents

for software engineering.

2.1 Overview of OSS-Fuzz project

Fuzz testing [6] is a popular method for detecting software secu-

rity vulnerabilities, via a biased random search over the domain

of program inputs. Launched by Google in 2016, OSS-Fuzz is an

open-source initiative designed to continuously detect security vul-

nerabilities across more than 1,250 open-source software projects.

The participating projects provide a fuzzing harness to test spe-

cific API functions. OSS-Fuzz monitors the reliability of software

projects’ repositories by continuously testing them with a wide

range of fuzzers (e.g., AFL++ [12], libfuzzer [35], Honggfuzz [21])

and sanitizers (e.g., AddressSanitizer [19] and UndefinedBehavior-

Sanitizer [41]). It automatically reports any crashes identified by

the fuzzers and periodically verifies whether the project has re-

solved the reported issues. As of May 2025, the OSS-Fuzz cluster

has discovered over 13,000 bugs across all projects. On average, OSS-

Fuzz has reported 22 bugs for each participating project, with some
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projects such as ffmpeg having over 400 bugs reported. In this work,

we focus on vulnerability remediation for C/C++ vulnerabilities

detected by OSS-Fuzz.

2.2 LLM Agents for Software Engineering

Recent advances in Large Language Models’ (LLMs) context win-

dows have significantly improved their ability to process complex

text sequences. This enhancement, combined with their capacity for

task planning, has led to the development of agent-based systems

designed to tackle a broad spectrum of problems. One area where

notable success was demonstrated is software engineering. Here,

an agentic system is provided with a natural language description

of a task, such as issue descriptions in software repositories like

GitHub. The issue can describe a bug or new features to be added

to a codebase. To solve the issue, the LLM can invoke external tools,

allowing it to interact with the environment and gather more data

before presenting a solution in the form of a patch. These tools

encompass actions fundamental to software engineering, such as

Abstract Syntax Tree (AST) search, e.g., getting a function or class

definition, file system navigation, and executing commands such

as compiling the project or running the test suite. By integrating

such tools, the agent can analyze the codebase, invoke tools to

gather additional information about the failure, and make modifi-

cations while keeping track of the original task. Examples of LLM

agents for software engineering include AutoCodeRover [49],

SWE-Agent [45], RepairAgent [5], and Agentless [44]. Although

many software engineering agents have been proposed, few stud-

ies have investigated their adaptation for security vulnerability

repair. Furthermore, to the best of our knowledge, no prior work

has conducted a large-scale, systematic study of LLM agents for

remediating vulnerabilities reported by industrial bug detection

services such as OSS-Fuzz.

Significance. Repairing vulnerabilities detected by fuzzing is

vital for enhancing software security and reliability, as evidenced

by the efforts from both software engineering research [8, 14, 48]

and industry [28]. According to a recent study by Mei et al. [31],

the number of vulnerabilities identified by OSS-Fuzz is growing

steadily despite the gap between reproducible vulnerabilities and

their fixes, posing a significant security risk. Furthermore, the ris-

ing number of unpatched vulnerabilities over time implies that

some vulnerabilities might not receive immediate attention. There-

fore, it is essential to propose reliable solutions for vulnerability

remediation.

3 CodeRover-S

To study whether LLM agents for general software engineering

tasks can be specialized for vulnerability remediation, we adapted

the open-source agent AutoCodeRover for security vulnerabil-

ity repair. In this section, we first provide an overview of Au-

toCodeRover, and subsequently discuss how we repurposed it for

vulnerability repair.

3.1 Agent for Issue Resolution

AutoCodeRover [49] is an LLM agent designed for software en-

gineering tasks like bug fixing and feature addition. It aims to

resolve software engineering issues in a realistic setup, where only

Context 
Retrieval Final patch

Codebase

Issue Report

Patch 
Generation

Reproducer 
Generation Review

Figure 1: Workflow of AutoCodeRover for issue resolution.

a natural-language description of the issue/requirement is available.

One such setup is GitHub issues, in which users submit bug reports

or feature addition requests to a software project.

Figure 1 illustrates the workflow of AutoCodeRover in resolv-

ing GitHub issues. Given a codebase C and a natural-language

(NL) issue report R, AutoCodeRover autonomously produces a

patch that aims to resolve the issue described in R. From the is-

sue report R, AutoCodeRover begins the main loop with context

retrieval and reproducer generation. Since an issue typically only

contains NL descriptions and no executable test to reproduce the

issue, AutoCodeRover first attempts to generate a candidate re-

producer test for the given issue. This reproducer test serves as an

additional specification for the patch generation later on. Other

than the reproducer test, AutoCodeRover also starts the context

retrieval stage from the issue report R. The goal of context retrieval

is to extract code snippets relevant to the issue R from a large

codebase, enabling the LLM to better understand the issue in re-

lation to the code. AutoCodeRover performs context retrieval

by designing a set of program structure-aware search tools (such

as search_class(...), search_method_in_class(...)), and al-
lowing the LLM to interact with a local codebase through these

tools. For example, given the example issue shown in Figure 2a,

the LLM would likely invoke the tool search_class("Colorbar")
to obtain more context about this class. Upon receiving this tool

invocation, the backend of AutoCodeRover searches for the actual

code/signature of the class Colorbar from an Abstract Syntax Tree

(AST) representation of the codebase, and returns the code/signa-

ture back to the LLM. This process of tool invocation and code

context collection happens iteratively, until the LLM deems that the

current code context is sufficient for understanding the issue. At the

end of the context retrieval stage, the LLM decides on a few buggy

locations from the current code context. These buggy locations are

provided to a patch generation module to craft candidate patches

that aim to resolve the issue.

After a candidate patch is generated, AutoCodeRover attempts

to examine whether it resolves the issue in a review module. If the

patch is deemed to resolve the issue, the workflow ends with it being

the final patch. Otherwise, a natural-language “suggestion” on how

to improve the current patch is sent back to the patch generation

module to iteratively improve the patch. A natural way to decide

whether a patch resolves the issue is to execute the reproducer test

on the patched program. The review module in AutoCodeRover

takes into consideration the generated candidate patch, the repro-

ducer test, and the issue descriptions to determine whether the

patch successfully resolves the issue. The candidate patch is then

subject to iterative refinement between the patch generation and
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(a) An example GitHub issue.
1

==24==ERROR: AddressSanitizer: heap-buffer-overflow on address

0x60e000000293 ...

READ of size 1 at 0x60e000000293 thread T0

#0 0xe7763d in q_memchr src/core/parser/../ut.h:422:7

#1 0xe771e8 in parse_quoted_param src/core/parser/parse_param.c:305:14

#2 0xe7175a in parse_param_body src/core/parser/parse_param.c:450:6

#3 0xe6b2d8 in parse_param2 src/core/parser/parse_param.c:496:13

#4 0xe6d274 in parse_params2 src/core/parser/parse_param.c:599:10

#5 0xe6ce56 in parse_params src/core/parser/parse_param.c:561:9

#6 0xeb16b2 in parse_contacts src/core/parser/contact/contact.c:243:8

#7 0xe4a638 in contact_parser src/core/parser/contact/parse_contact.c:55:7

#8 0xe49405 in parse_contact src/core/parser/contact/parse_contact.c:84:6

#9 0x87e4f4 in parse_contact_header src/core/select_core.c:234:9

...

(b) Example of sanitizer report for Kamailio-38065
2
.

Figure 2: Examples of GitHub issue and sanitizer report.

the review module. If no acceptable patches were generated after

several rounds of review, AutoCodeRover goes back to the con-

text retrieval stage to re-discover buggy locations and a new set

of patches. Upon reaching a pre-defined numebr of rounds, Au-

toCodeRover selects the most promising patch generated so far

and returns it as the final output.

3.2 Agent for Security Vulnerability Repair

TheAutoCodeRoverworkflow presented in Section 3.1 is designed

for resolving software engineering issues with natural language

descriptions. We next discuss the adaptation of AutoCodeRover

into the context of repairing vulnerabilities detected by fuzzing

campaigns such as in OSS-Fuzz. This adaptation results in an LLM

agent for security vulnerability repair, which we call CodeRover-S.

We observe various differences between resolving GitHub issues

and repairing vulnerabilities detected by fuzzers. Firstly, sanitizer

reports produced by fuzzers contains less elaboration and natural

language descriptions of the bug. Figure 2b shows an example of

1
Issue #22864 from the matplotlib project. https://github.com/matplotlib/matplotlib/

issues/22864

2
Bug #38065 from the Kamalio project, detected by OSS-Fuzz. https://bugs.chromium.

org/p/oss-fuzz/issues/detail?id=38065

sanitizer-generated report. These auto-generated reports contain

the error type and a stack trace when executing the exploit input,

but does not contain natural language elaboration of the root cause

and context of this bug. In contrast, GitHub issue reports (as shown

in Figure 2a) are typically human-written and contain descriptions

on relevant program components and additional details of the issue.

As a result, GitHub issue reports usually contain more diverse infor-

mation for LLM agent to start exploring the relevant components of

the software, while sanitizer reports focus more on a specific crash.

This difference highlights the need for providing additional context

to LLM agents when repairing vulnerabilities found by fuzzing.

In addition, vulnerabilities found by fuzzing are always accompa-

nied by a Proof-of-Vulnerability exploit input. In contrast, although

GitHub issues may contain steps for reproduction in the descrip-

tion, these steps are often not executable out-of-box. Since fuzzing

always provides reproducible exploit input, an LLM agent can em-

ploy more extensive retries in generating candidate patches, using

the exploit input as an oracle to validate the candidate patches.

Leveraging these differences, we propose CodeRover-S, an LLM

agent built on top of AutoCodeRover but tailored for security vul-

nerability repair. Figure 3 presents the workflow of CodeRover-S.

Compared to AutoCodeRover, CodeRover-S generates additional

program context beyond the sanitizer report, so that more relevant

program locations can be explored by the agent. We generate addi-

tional program context through a combination of static and dynamic

analysis, which respectively provide static typing information and

dynamic call graphs to the LLM. Moreover, since there is an exploit

input available, CodeRover-S directly leverages it as an oracle for

validating candidate patches during the Patch Review stage, instead

of attempting to generate a new reproducer input. After the Patch

Review stage, if no candidate patches pass the exploit input oracle,

an iteration of agent run concludes. In CodeRover-S, we construct

an iteration feedback that summarizes the locations and patches

explored in the current iteration, and provide this feedback to the

next iteration. CodeRover-S will output a final patch if the patch

passes the oracle in any iteration, or output the best patch so far

(based on heuristics such as whether the patch can be compiled).

In the remainder of this section, we elaborate on the novel fea-

tures of CodeRover-S in greater detail.

3.2.1 Dynamic Call Graph. As shown in Figure 2b, the sanitizer

report records the stack trace when the program crashes due to the

manifestation of the bug. However, the crash stack trace is only

a small part of the entire execution and may not serve as a good

starting point for the LLM agent to gather context. For example,

the bug Kamailio-38065 shown in Figure 2b was patched by the

developer with the changes shown in Figure 4. The developer patch

modifies the skip_name function, which does not appear in the

stack trace but is invoked in other parts of the execution. It could be

challenging for the agent to use the sanitizer report as the starting

point of context retrieval and navigate to this function in the code-

base. To address this challenge, we take advantage of the available

exploit input, and generate a dynamic call graph from the execution

of the exploit input. This dynamic call graph is used to augment

the sanitizer report and provides more contextual information for

the agent to navigate the codebase.

https://github.com/matplotlib/matplotlib/issues/22864
https://github.com/matplotlib/matplotlib/issues/22864
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=38065
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=38065
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Figure 3: Workflow of CodeRover-S for repairing security vulnerabilities.

1 i ndex 8 c6ebdd6bb . . 3 4 5 1 6 7 0 2 2 f 100644

2 −−− a / s r c / co r e / p a r s e r / c o n t a c t / c o n t a c t . c

3 +++ b / s r c / co r e / p a r s e r / c o n t a c t / c o n t a c t . c

4 @@ −147 ,10 +147 , 10 @@ s t a t i c i n l i n e i n t skip_name ( s t r ∗ _s )

5 r e t u r n 0 ;

6 }

7 − i f ( ∗ p == ' : ' ) {

8 + i f ( ∗ p == ' : ' | | ∗ p == ' ; ' ) {

9 i f ( l a s t _wsp ) {

10 − _s −>s = l a s t _wsp ;

11 _s−> l en −= l a s t _wsp − _s −>s + 1 ;

12 + _s −>s = l a s t _wsp ;

13 }

14 r e t u r n 0 ;

15 }

Figure 4: The developer’s patch for fixing Kamailio-38065.
3

To construct this dynamic call graph, we instrument the buggy

program during compile time to insert hooks at every function

entry and exit points. These hooks record the memory addresses of

the functions, as well as the calling relationships between callers

and callees. The instrumented program is then executed with the

exploit input to trigger the vulnerability. During the execution,

the function entry/exit hooks log an edge list comprising pairs

of function call addresses. Following this procedure, we map the

memory addresses to their original function names and source code

locations (e.g. filename and line number). In practice, we utilize

addr2line [16], gdb [17], and nm [18] to accomplish such mappings.

Figure 5 shows an example of the constructed dynamic call graph

for the bug Kamailo-38065. The red and blue-colored function calls

display the part of the dynamic call graph beyond the crash stack

trace. These function calls serve as additional starting points for

the agent to explore the codebase. To make the call graph available

to the LLM, we concatenate the list of additional function calls

to the sanitizer bug report as “other functions executed by the

bug-triggering input”. The additional list of function calls enriches

the auto-generated bug report from sanitizers, and provides more

context for code retrieval in CodeRover-S.

3.2.2 Type-assisted Patching. The output of the context retrieval
stage in CodeRover-S is a list of buggy locations (e.g. functions).

With the code snippets at the buggy program locations, the patch

3
https://github.com/kamailio/kamailio/commit/20db418f1e35f31d7a90d7cabbd22ae989b7266c

parse contact header

parse contact

contact parser

parse contacts

parse params

parse params2

skip name

trim trailling

skip uri

trim

trim leading

trim leading

trim trailling

trim trailling

Figure 5: An example of generated dynamical call graph. The

dashed lines (on the left) represent the order of function calls

on stack trace and the solid lines augment them to show the

actual dynamical call graph. The red colored function call is

the fix location selected by the developer.

generation stage attempts to craft patches that fix the vulnerability.

However, a generated patch may not always be compilable. This

is because the code of the buggy function itself may not contain

the necessary patch ingredient. For example, if the type definition

of a struct variable s is not within the buggy function, the LLM

may hallucinate some field names of s and use those names in the

patch, which will make the patch not compilable. A straightforward

solution is to provide the entire file content around the buggy

functions to the LLM. However, code files can be large in real-

world C/C++ projects, and may not fit in the context window of

the LLM. Even if the entire file fits within the context window, the

relevant type definitions might be absent, as they could be defined

in separate header files.

To ensure the relevant context is present for patch generation,

we introduce a type-assisted patch generation prompt that includes

all existing variables and their types in the scope of the buggy

function. To craft such a prompt, we parse the C/C++ source files

to capture critical language constructs, such as structs, classes,

typedefs, and enums. Using this information, we construct file

stubs to document the relationships between types, variables, and

function definitions. These file summaries also encapsulate function

signatures without any implementation details, so that a concise

https://github.com/kamailio/kamailio/commit/20db418f1e35f31d7a90d7cabbd22ae989b7266c
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To ensure the patch is compilable, please use only existing variables at the

specified bug locations. Here’s a list of available variables and their types:

variables in method: parse_param_body
Variables declarations:
- name: p , type: param_t*

typedef: param_t original_type:struct param ...
- name: _s , type: str*

typedef: str original_type:* json_key
...

- name: separator , type: char
- name: _c , type: pclass_t

typedef: pclass_t original_type:enum pclass ...

When writing your patch, make sure to:

1. Use variables in a way that’s consistent with their types.

2. Do not introduce imaginary variables that do not exist within the existing

code snippet or the provided context.

Write a patch for the vulnerability, based on the relevant code context. First

explain the reasoning, and then write the actual patch.

When writing the patch, remember the following:

- You don’t have to modify every location - just make the necessary changes.

- Other than the vulnerability to fix, your patch should preserve the program

functionality as much as possible. ...

Figure 6: Augmented repair prompt using type information.

summary on the relevant types can be provided to the LLM. These

specialized file summaries represent essential contextual knowledge

before patching. Our design enhances contextual understanding

prior to patching stage, thereby reducing compilation-related errors

and improving patch quality. An example patch generation prompt

for the example vulnerability Kamailio-38065 is shown in Figure 6.

3.2.3 Iteration Feedback. CodeRover-S enters a retry loop if no

plausible patch was generated in the first iteration. Instead of start-

ing a retry from a fresh state, we integrated feedback from the

previous iteration before starting a retry. This is to encourage the

agent to explore diverse program locations and patches, so that it

does not repeatedly revisiting the same locations when retrying. At

the end of each iteration, we collect all the buggy locations from the

previous unsuccessful repair attempts and provide a summary to

the next iteration. Specifically, we prepare a prompt that contains

the used file names, function names, and unsuccessful patches, and

explicitly encourage the agent to explore alternative locations and

fix strategies at the beginning of the next iteration.

4 Evaluation

To study the effectiveness of automated tools in real-world vulner-

ability remediation, we evaluate various systems on real vulnera-

bilities detected by OSS-Fuzz. We aim to examine the efficacy of

LLM agents and learning-based vulnerability repair systems under

a realistic vulnerability repair scenario. Specifically, we would like

to answer the following research questions:

• RQ1:What is the efficacy of CodeRover-S in repairing real-world

security vulnerabilities compared to other tools?

• RQ2: How do the new components in CodeRover-S affect its

overall efficacy?

• RQ3: Can CodeRover-S repair new vulnerabilities found by

fuzzing that have not been patched before?

Benchmark in RQ1,2. In RQ1 and RQ2, we utilize the recently in-

troduced reproducible benchmark dataset, ARVO [31]. The ARVO

dataset contains 5,001 C/C++ vulnerabilities detected by OSS-Fuzz

across 273 projects, and each vulnerability comes with an environ-

ment to rebuild the buggy project and a bug-triggering exploit input.

Since a large number of vulnerabilities have been discovered by

OSS-Fuzz in the past years and are contained in the ARVO dataset,

we randomly sampled a subset of 588 bugs with 99% confidence

level and margin of error of 5%. If any of the buggy programs took

too long to be compiled (i.e., more than 15 minutes), we randomly

sample new bugs to replace them. This is to ensure the builds during

the repair/validation process can finish within a reasonable amount

of time. The final set of 588 vulnerabilities from ARVO is used as our

dataset in RQ1-2. Figure 7 presents the distribution of vulnerabili-

ties in our dataset based on their Common Weakness Enumeration

(CWE) type. The most common CWE types are buffer overflows

(CWE-121 heap-based overflow and CWE-122 stack-based over-

flow), segmentation faults (CWE-476), use-after-free (CWE-416),

and use of uninitialized value (CWE-457).
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Figure 7: Vulnerability distribution in our dataset by CWE

types.

Metric. We evaluate the final patch generated by a tool by applying

it to the buggy program, compiling the patched program, and exe-

cuting the exploit input on the patched program. We then classify

the patches into the following categories: (1) No Patch (NP): A

patch is not generated by the tool. (2) Compilation error (CE): A

patch is generated, but caused compilation errors when building

the program. (3) Implausible (IP): The generated patch compiles

without errors, but the original exploit input still triggers the vul-

nerability. (4) Plausible (P): The patch compiles successfully, and

the original exploit input can no longer trigger the bug.

Baseline tools. We compare CodeRover-S with two baseline tools:

(1) Agentless [44]: Agentless is a widely used LLM-based system

designed for program repair tasks. Agentless employs a fixed

three-phase workflow of localization, repair, and patch valida-

tion. The localization phase happens on multiple granularities,

such as classes, methods, and file names. The repair phase gen-

erates multiple patches at the identified fix locations and then

a patch validation phase is invoked to choose the final patch.

Agentless was originally designed for Python codebases. To

use Agentless for the C/C++ projects in OSS-Fuzz, we have
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Figure 8: Comparison of results from CodeRover-S, Agentless and VulMaster. Results of CodeRover-S and Agentless

are obtained with o3-mini as the backend LLM. Results of CodeRover-S with gemini-2.5-flash will be discussed in Section 4.2.

re-implemented the project structure generation, class/function

parsing, and edit location mapping for C/C++. For patch valida-

tion/selection, since there is an exploit input available for each

vulnerability, we use the following rule to select the final patch:

A plausible patch is strictly preferred to implausible one, and an

implausible patch is strictly preferred to the one with compilation

error. If there are multiple plausible patches, the first one is

chosen as the final patch.

(2) VulMaster [51]: VulMaster is a learning-based vulnerabil-

ity repair tool. VulMaster finetunes a CodeT5 model using

vulnerability repair data such as CWE identifiers, vulnerabil-

ity descriptions, exemplar repairs and the vulnerable program

fragment to be repaired. Learning-based vulnerability repair

tools like VulMaster usually assume patch locations (e.g., state-

ment/expression) to be given. To use VulMaster in a realistic

vulnerability repair scenario, we employ the standard Spectrum-

based Fault Localization (SBFL) to obtain a few candidate fix

locations, and run VulMaster over these locations. This SBFL

process takes in the exploit input as the failing test, and other

non-crashing inputs generated from the OSS-Fuzz fuzzing cam-

paign as the passing tests, and computes a list of suspicious

locations using the Ochiai metric [1]. We use the top-five suspi-

cious locations (line-level) from SBFL as the fix locations, and

use VulMaster to generate a patch at each of these locations.

Since the final trained model of VulMaster was not publicly

released, we follow VulMaster authors’ suggestions to fine-

tune a CodeT5 checkpoint using the same training dataset in

the original paper. Since there are multiple patches produced

(one at each location), we select the final patch by following the

same process as that in Agentless.

For each vulnerability, the inputs to CodeRover-S and Agent-

less are:

(1) An exploit input that triggers the vulnerability.

(2) The sanitizer-generated bug report for this vulnerability.

For VulMaster, we follow its original setup [51] and give it the

following inputs:

(1) CWE identifier extracted from the sanitizer-generated report.

(2) A few exemplar fixes for the corresponding CWE type, extracted

from the CVEFixes dataset [4].

(3) The function containing the fix location identified from SBFL.

For agent systems (CodeRover-S and Agentless) used in our

evaluation, we used the OpenAI o3-mini as the backend LLM in

RQ1. For CodeRover-S, we set the maximum number of feedback

iterations to be three.

4.1 RQ1: Repair Efficacy

In this RQ, we evaluate the efficacy of CodeRover-S, Agentless,

and VulMaster in generating plausible patches on the ARVO

dataset.

Results. The pie charts in Figure 8 provide a comparative analy-

sis of the patches for the three systems. All three charts categorize

patches based on the aforementioned criteria, which are plausible

(P), implausible (IP), compilation errors (CE), and No Patch (NP). As

shown in the left figure, CodeRover-S generated plausible patches

for 61.1% of the vulnerabilities, showing that it can plausibly fix a

large proportion of vulnerabilities with o3-mini as the backend LLM.

For the other 29.3% of the vulnerabilities, CodeRover-S generated

compilable but implausible patches. The non-compilable patches

account for a low percentage of the dataset (1.5%), suggesting that

the agent can generated compilable patches to a large extent if it is

given sufficient code context and type information. For the remain-

ing 8.2%, CodeRover-S did not generate a patch due to errors in

the code search or other exceptions happened during the execution.

In comparison, Agentless generated plausible patches for fewer

bugs (39.0% versus 61.1% with CodeRover-S). This lower plausibil-

ity rate corresponds to higher rates of implausible patches (39.6%

versus 29.3%with CodeRover-S) and non-compilable patches (19.0%

versus 8.2%). Furthermore, we examine to what extent plausible

patches generated from both tools overlap. As seen in Figure 9, the

overlap between CodeRover-S and Agentless is significant, with

most of the patches (84.3%) found by Agentless also present in that

of CodeRover-S. Overall, we observe that CodeRover-S achieves

better efficacy than Agentless in repairing security vulnerabilities.

To some extent, this is expected since CodeRover-S is targeted

for security patching while Agentless was designed for program

repair in general.

Unlike the agent systems that generated plausible patches for

around 39-61% of the vulnerabilities, VulMaster could not gen-

erate plausible patches for most of the vulnerabilities. The results

from VulMaster demonstrate that 63.6% of the vulnerabilities have

only non-compilable patches, the highest of all tools. In addition,

30.4% of the vulnerabilities do not have a patch that can be applied
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Figure 9: Venn diagram of plausible patches produced by

CodeRover-S and Agentless.

to the program. Only 5.8% of the vulnerabilities have an implausible

patch. Lastly, there is a single plausible patch, which is a function

call removal. This suggests that learning-based repair tools such

as VulMaster is significantly less capable of generating plausi-

ble patches for vulnerabilities detected by OSS-Fuzz, compared to

LLM-based agents.

4.2 RQ2: Analysis of CodeRover-S Results

In this section, we provide further analysis of patches generated by

CodeRover-S.

Ablation Study. To assess the contribution of the newly introduced

features in CodeRover-S to its overall efficacy, we conducted an

ablation study on the features described in Section 3.2.We evaluated

two ablation configurations:

(1) w/o Call Graph: Disables dynamic call graph generation (Sec-

tion 3.2.1) in CodeRover-S.

(2) w/o Call Graph, Typing, Feedback: Disables dynamic call graph

generation (Section 3.2.1), type-assisted patching (Section 3.2.2),

and iteration feedback (Section 3.2.3). This configuration re-

moves all specialized features, reducing CodeRover-S to an

agent comparable to AutoCodeRover.

We ran these configurations of CodeRover-S on a randomly

selected 30% subset of the dataset used in RQ1 to reduce cost. In

addition to evaluating the effect of the new features, we also aimed

to examine whether the efficacy of CodeRover-S generalizes to

different backend LLMs. To this end, we performed the ablation

experiments with gemini-2.5-flash and compared the results against

o3-mini in RQ1.

The results of the ablation study are presented in Table 1. Com-

paring to the original CodeRover-S, removing all specialized fea-

tures (c.f. Row ‘w/o Call Graph,Typing,Feedback’) reduces the plau-

sible rate from 71.8% to 66.7%. Removing these features also in-

creased the proportion of non-compilable patches generated by the

agent (from 1.1% to 5.1%). When only the call graph component is

removed (c.f. Row ‘w/o Call Graph’), the proportion of ‘No Patch’

increases (7.9% -> 9.6%), whereas the proportion of ‘Implausible’

patches decreased (19.2% -> 17.5%). This result suggests that the

call graph primarily helps the agent generate candidate patches by

identifying more potential program locations to modify, but not

necessarily makes the patches plausible. Features such as typing

information and feedback play a more critical role in improving

the quality of generated patches, thereby increasing the plausible

rate. In addition, as shown in Figure 10, each configuration in the

6
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Figure 10: Venn diagram of plausible patches from the three

configurations in the ablation study.

ablation study uniquely addresses a number of vulnerabilities. Fur-

thermore, switching from o3-mini (released in January 2025) to

gemini-2.5-flash (released in June 2025) improves the plausibility

rate from 61.6% to 71.8%. As more advanced models are released,

the prospects for agent-based vulnerability remediation become

increasingly promising.

Patch Correctness. We have so far examined the plausibility of

patches generated by the agent. However, although a plausible

patch may prevent the program from crashing with the exploit

input, it is not necessarily correct, as it may not generalize to other

inputs. This issue is known as the patch overfitting problem [40] in

program repair. To evaluate the correctness of the plausible patches,

we performed a manual inspection of a large sample. We use two

criteria in our manual inspection: (1) whether the generated patch

is semantically equivalent to the patch written by developers, and

(2) whether we think the patch correctly fixes the vulnerability, re-

gardless of equivalence to the developer’s patch. For inspection, we

consider all plausible patches generated by CodeRover-S (gemini-

2.5-flash) in RQ2. We excluded vulnerabilities without a reliably

labeled developer patch, as these lack a clear ground truth for as-

sessing semantic equivalence. In total, we manually inspected 88

vulnerabilities with agent-generated plausible patches.

Our manual inspection confirmed that 45.5% (40/88) of the plausi-

ble patches were correct. Agent-generated patches can be incorrect

for several reasons. Firstly, some patches only focus on fixing the

specific scenario demonstrated by the exploit input, but missed

other edge cases such as strings consisting solely of whitespace. Sec-

ondly, the agent-generated patches can introduce unnecessary pro-

gram logic changes that are unrelated to the vulnerability. We fur-

ther compared the plausible patches against the developer patches,

and identified 14.8% (13/88) of the agent-generated patches were

semantically equivalent to the developer patch. Non-equivalent

but correct cases typically occur when the agent-generated patch

resolves the vulnerability directly, whereas the developer patch

fixes the issue by rejecting invalid or problematic inputs earlier in

the execution. A vulnerability can usually be fixed in multiple ways

– a patch that is not semantically equivalent to the developer patch

can still be correct, as shown from our manual inspection.

4.3 RQ3: Repairing Unpatched Vulnerabilities

In addition to evaluating CodeRover-S on repairing known vul-

nerabilities from the ARVO dataset, we further evaluated its effec-

tiveness in repairing unpatched vulnerabilities. Unpatched vulner-

abilities refer to those detected by OSS-Fuzz, reported to project



Fixing Security Vulnerabilities with Agentic AI in OSS-Fuzz ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Table 1: Results of Ablation Study. The main results are obtained with gemini-2.5-flash as the backend LLM. Results with

o3-mini on the same set of vulnerabilities are shown as reference.

Tool Configuration LLM Plausible Implausible Compilation Error No Patch

CodeRover-S- w/o Call Graph, Typing, Feedback gemini-2.5-flash 66.7% 17.5% 5.1% 10.7%

CodeRover-S- w/o Call Graph gemini-2.5-flash 70.1% 17.5% 2.8% 9.6%

CodeRover-S (Full) gemini-2.5-flash 71.8% 19.2% 1.1% 7.9%

CodeRover-S (Full) o3-mini 61.6% 32.6% 1.7% 4.1%

Total: 45 Agent found plausible
patch: 33

No plausible patch:
12

Patch deemed as
correct by us: 12

Patch submitted to
project maintainer: 9 Patch merged by project maintainer: 5

Vulnerability already
fixed before we submit

patch: 3

Patch deemed
incorrect by us: 21

No response as project is not actively maintained: 2

Vulnerability fixed by another human-written patch: 2

Figure 11: Results of CodeRover-S on 45 unpatched vulnerabilities detected by OSS-Fuzz.

maintainers, publicly disclosed, but not yet patched. To construct

this dataset, we collected issues from theOSS-Fuzz issue tracker [22]

whichwere disclosed between January andApril 2025 that remained

unpatched at the time of our experiment. We then excluded vulner-

abilities that (1) could not be reproduced in our environment, and

(2) belong to the projects not implemented in C/C++. Finally, we

obtained a dataset of 45 unpatched vulnerabilities across 28 projects

for RQ3. We applied CodeRover-S on this dataset of unpatched vul-

nerabilities to generated plausible patches, and conducted manual

inspection similar to that in RQ2 to determine whether the plausible

patches are correct. Because these vulnerabilities had not yet been

patched, we submitted agent-generated patches that we judged

to be correct to the corresponding project repositories, enabling

remediation and helping to reduce the window of exposure.

Results. Figure 11 summarizes the results of this study. CodeRover-

S produced plausible patches for 33/45 (73.3%) of the vulnerabilities.

This high plausibility rate indicates that the efficacy of agents like

CodeRover-S can extend beyond benchmark settings and general-

ize to real-world deployment. We manually inspected all plausible

patches and identified 12 of them as correct. These patches were

suitable for submission to the corresponding project repositories for

resolving the fuzzer-detected vulnerabilities. At the time of patch

submission, three vulnerabilities had already been patched indepen-

dently (i.e., patched between the time of dataset collection to patch

submission), thus we excluded them from the submissions. We sub-

mitted the remaining nine patches to their corresponding GitHub

or GitLab project repositories by opening a Pull Request (PR). In

each PR, we explicitly disclosed that the patches were generated

by an LLM agent, and they aim to address vulnerabilities detected

by OSS-Fuzz. Of the nine submitted patches, five have already

been merged by project maintainers into four different projects:

Assimp [30], Fluent Bit [3], LibTIFF [36], and ReadStat [43]. The

remaining four patches were not merged for the following reasons:

(1) two vulnerabilities were independently fixed by human-written

PRs submitted by other developers, or (2) the maintainers had not

yet processed the PRs (with the master branch most recently up-

dated in December 2024). The successful acceptance and integration

of these agent-generated patches demonstrate their high quality

and highlight the strong potential of LLM agents for automated

vulnerability remediation.

Reducing manual effort. While the process from fuzzer reports to

agent-generated patch submission is largely automated, assessing

the correctness of the plausible patches still remains a manual task.

This step is essential to prevent developers from spending time

reviewing a large number of incorrect patches. To reduce man-

ual efforts in assessing plausible patches, we further investigated

whether an LLM-as-a-judge [24] approach could be employed to

automatically assess the correctness of plausible patches. We note

that the aim of this study is to understand the feasibility of such an

approach and to highlight future research directions, rather than

to propose a sophisticated LLM-as-a-judge method.

Our study was conducted as follows. For each vulnerability and

its plausible patch, we constructed a context consisting of:

• The sanitizer report.

• The plausible patch.

• File contents of all files modified by the plausible patch.

• 50 lines of surrounding code for each line that appeared in the

crash stack trace.

We then provide an LLM with this context and the instructions

describing the vulnerability repair scenario and the differences be-

tween plausible and correct patches. The LLM is tasked to produce

a binary decision on whether the patch is correct and its reasoning.

We used our manual inspection results as the ground truth and

evaluated Sonnet-4 and GPT-5 (with different reasoning efforts)

with this LLM-as-a-judge approach.

The results are presented in Table 2. Overall, Sonnet-4 outper-

forms GPT-5 in terms of F1-score (0.73 versus 0.52-0.57) and ac-

curacy (0.73 versus 0.61-0.67). However, both models exhibit rela-

tively low precision, ranging from 0.47 to 0.57. This indicates that

several incorrect patches would be wrongly classified as correct

when using LLM as a judge. Despite this low precision, Sonnet-4

demonstrates promising potential: it correctly identified all the true

positive patches (TP=12), and mainly suffers from false positives.

There is potential for improvement through fine-tuning the LLM or
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Table 2: Performance of LLM-as-a-judge in determining patch

correctness.

LLM TP FP TN FN F1 Prec. Recall Acc.

GPT-5 (low) 7 8 13 5 0.52 0.47 0.58 0.61

GPT-5 (medium) 7 6 15 5 0.56 0.54 0.58 0.67

GPT-5 (high) 8 8 13 4 0.57 0.50 0.67 0.64

Sonnet-4 12 9 12 0 0.73 0.57 1.00 0.73

integrating test-based patch correctness assessmentmethods [42] to

reduce false positives. In summary, this study reveals that there is a

substantial gap in using LLMs as judges to automatically distinguish

correct patches from plausible but incorrect ones, highlighting a

promising direction for future research.

5 Related Works

Automated Program Repair (APR) techniques [23] seek to repair

faulty programs by automatically generating patches for developers.

In this section, we discuss APR for security vulnerabilities based

on program analysis, machine learning, and LLMs, respectively.

5.1 Program Analysis based Approach

Awide range of analysis-based approaches have been explored to re-

pair software vulnerabilities [14, 26, 48]. SenX [26] repairs program

vulnerabilities using pre-defined safety properties and techniques

such as access range analysis and loop cloning. ExtractFix [14] em-

ploys crash-free constraints to bootstrap the repair process. It first

infers crash-free constraints for the given vulnerability, which are

then propagated to the fix location and used to synthesize patches.

VulnFix [48] employs a counter-example guided inductive inference

approach to construct patch invariants at potential fix locations, and

generates patches based on the invariants. Analysis-based vulnera-

bility repair approaches often ground patch generation based on

properties or constraints, which gives guarantees to the generated

patches. However, the analysis involved can be resource-intensive

and requires complex environmental setups [29].

5.2 Machine Learning based Approach

Machine learning (ML) based APR formulates the repair problem as

neural machine translation (NMT) which translates buggy code to

fixed code. General-purpose ML-based APR [9, 27] trains a model

with sequence-to-sequence learning on datasets consisting pairs of

buggy and fixed programs. Beyond general-purpose repair tools,

several ML-based approaches have been proposed for repairing

security vulnerabilities. VRepair [8] is a vulnerability repair tool

that is based on transfer learning. It is first trained on a large bug fix

corpus, and then finetuned on a smaller vulnerability fix dataset. In-

stead of training a model and adapting it to vulnerability repair with

transfer learning, VulRepair [13] finetunes a pre-trained CodeT5

model for repairing vulnerabilities. VulMaster [51] is a recently

proposed tool that integrates diverse information such as code

structure and expert knowledge for vulnerability repair, and it is

studied in our work.

5.3 LLM-based Approach

Our work is closely related to research on LLM-based vulnera-

bility repair. Pearce et al. [34] investigate the use of code LLMs

for zero-shot vulnerability repair, showing that LLMs can gener-

ate fixes when given a carefully constructed prompt. Beyond the

zero-shot setting, various prompting strategies have been explored

for vulnerability repair. APPATCH [32] employs adaptive prompt-

ing and vulnerability semantics reasoning to suggest bug fixes.

San2Patch [29] utilizes Tree of Thought prompting to explore mul-

tiple locations and patches at each step, enabling a diverse search

of potential solutions. Concurrent with our work, PatchAgent [46]

and WilliamT [50] propose agentic approaches for vulnerability

repair. PatchAgent [46] integrates various interaction optimizations

into an LLM agent to mimic human expertise in vulnerability repair.

WilliamT [50] introduces a template-guided patch generation ap-

proach using LLM to repair vulnerabilities at the crash site instead

of the root cause. In contrast, our work focuses on adapting an

existing agent designed for issue resolution to vulnerability repair

by incorporating additional program analysis, such as dynamic call

graphs and type information.

6 Perspectives

Automated program repair technologies typically involve search,

semantic reasoning and machine learning to automatically rectify

bugs and vulnerabilities. Typically such techniques are driven by a

given test-suite as an indicator of correctness, and hence are diffi-

cult to apply for security vulnerabilities where only one test (the

exploit) may be available. Recent emergence of Large Language

Models (LLMs) have put the focus on fixing “issues” where natural

language bug reports may be used to produce rectifying program

modifications via LLM agents. In this work, we have demonstrated

the feasibility of using a repurposed LLM agent CodeRover-S

for rectifying security vulnerabilities found by continuous fuzzing

taken from the widely used OSS-Fuzz infrastructure [33]. The main

experience gained points us to the feasibility of using LLM agents

as back-ends to fuzzers for zero-day patching of security vulnerabil-

ities. We demonstrated that full software protection from detection

to repair is feasible with fuzzers and LLM agents, and there are fu-

ture research potentials in patch correctness assessment to further

improve the degree of automation.
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