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Abstract Keywords

Critical open source software systems undergo significant valida-
tion in the form of lengthy fuzz campaigns. The fuzz campaigns
typically conduct a biased random search over the domain of pro-
gram inputs, to find inputs which crash the software system. Such
fuzzing is useful to enhance the security of software systems in
general since even closed source software may use open-source
components. Hence testing open source software is of paramount
importance. Currently OSS-Fuzz is the most significant and widely
used infra-structure for continuous validation of open source sys-
tems. Unfortunately even though OSS-Fuzz has identified more
than 13,000 vulnerabilities across 1000 or more software projects,
the detected vulnerabilities may remain unpatched, as vulnerability
fixing is often manual in practice.

In this work, we explore the use of Large Language Model (LLM)
agents for automated vulnerability remediation. To our knowledge,
this is the first systematic study of LLM-assisted security patching
on OSS-Fuzz. We adapt the AutoCodeRover agent, which typically
fixes bugs from issue descriptions, to the security domain. Instead
of issue text, our agent extracts vulnerability-relevant code ele-
ments through the execution of the exploit input, and augments
patch generation with static typing information. We evaluate our
agent in two settings. On a benchmark of historical vulnerabili-
ties detected by OSS-Fuzz, our agent generates plausible patches
for 61% to 72% of the cases. We then conduct the first evaluation
of LLM agents on real-world, unpatched vulnerabilities reported
by OSS-Fuzz. In this setting, the agent performs comparably to its
benchmark results. Moreover, several agent-generated patches have
already been merged into widely used open-source projects. These
results demonstrate both the practicality of automated vulnerability
remediation with LLM agents, and the feasibility of an end-to-end
software protection cycle from detection to repair.
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1 Introduction

Security vulnerabilities are one of the major threats to modern
software systems. Once exploited by malicious attackers, security
vulnerabilities can cause significant damage to the software and
its users, incurring financial loss, data breaches, and more. In 2023,
30,927 new Common Vulnerabilities and Exposures (CVEs) are
recorded by the National Vulnerability Database (NVD), and half of
these vulnerabilities were classified as high or critical severity [39].
The number of new CVEs has increased by 17% compared to the
previous year, underscoring the accelerated pace of vulnerability
detection and the critical need for timely remediation. The recent
advancement in automatic programming with generative Al could
further exacerbate the security issues, since some parts of the appli-
cation code could come from Large Language Models (LLMs) with
little security assurance.

To safeguard the software systems, researchers and practitioners
have made advances in both vulnerability detection and remedia-
tion. To detect security vulnerabilities before they are discovered/ex-
ploited by attackers, various techniques from static analysis [15, 38]
to fuzzing [35, 47] have been developed and also adopted in the
industry. Static analysis techniques can be applied to detect a wide
range of vulnerabilities. However, they are known to report false-
positive warnings since they are often based on abstraction and
conservative approximation of the program semantics [25]. Fuzzing,
on the other hand, employs a biased random search in the pro-
gram’s input space and dynamically executes the program. The
dynamic nature of fuzzing ensures that a reported bug is a true
positive. Fuzzing has been employed by major software compa-
nies to continuously scan for vulnerabilities in their development
process [7, 10]. Google’s OSS-Fuzz, announced in 2016, provides
continuous fuzzing for various core open-source software [2]. As
of May 2025, OSS-Fuzz has identified over 13,000 vulnerabilities
across 1,000 projects [33].

While vulnerability detection techniques like fuzzing have shown
to be both mature and effective, detection is only the first step
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in comprehensive software protection. A detected bug should be
patched as soon as possible to reduce the time of exposure and
the risk of being exploited. A previous study in 2021 has shown
that the median time-to-fix (i.e. time from bug reporting to patch
verification) to be 5.3 days for bugs detected by OSS-Fuzz [11], and
10% of the reported bugs are not fixed within the 90-day disclosure
deadline. The rising number of detected vulnerabilities in recent
years may require developers to invest even more time and effort in
manually patching them. There is an urgent need for automated vul-
nerability remediation in continuous fuzzing pipelines to both ease
the developers’ workload and minimize the window of exposure.

Recent advancements in generative Al and LLM agents have
shown promise in autonomous vulnerability remediation in pro-
grams [37, 44, 45, 49]. These LLM agents are designed for general
software engineering tasks, including bug fixing and feature de-
velopment. They operate in real-world scenarios where tasks are
described by users in natural language. Using the task description
and the software codebase as inputs, the agents generate code mod-
ification suggestions to fulfill the specified requirements. Since
repairing security vulnerabilities is a specialized software engi-
neering task, we hypothesize that with appropriate adaptation,
general-purpose LLM agents for software engineering can be re-
purposed for this task. These repurposed agents can potentially be
integrated into existing vulnerability detection pipelines such as
fuzzing, where they can provide the remediation after detection
and complete the software protection cycle.

CopERoVER-S. In this paper, we present a large scale real-world
study on using LLM agents for security vulnerability repair. To
enhance the realism of our effort, we use as dataset the OSS-Fuzz
projects, which seek to enhance the state of practice of open source
security [33]. We repurposed the LLM agent AUTOCODEROVER [37,
49] to repair security vulnerabilities, and implemented a version
named CoDEROVER-S (i.e. AUTOCODEROVER for security). With the
vulnerability report and an exploit input produced by a fuzzing
campaign, CODEROVER-S autonomously generates patches that fix
the detected vulnerability. In the process of adapting LLM agents
for vulnerability repair, we identified that one challenge was the
insufficient information contained in the auto-generated vulnerabil-
ity report. Unlike human-written issue report for general software
engineering tasks, vulnerability reports are often auto-generated by
the fuzzer and only contain information like the bug type and crash
stacktrace. To enrich the context for vulnerability repair, we extract
dynamic call graph information from the exploit input found by
fuzzing, which is then used to augment the report generated by the
fuzzer. In addition, we perform a type-based analysis at the program
locations identified as faulty by the agent, and use the additional
type information to augment the patch generation process.

We evaluate the efficacy of CODEROVER-S in both historical vul-
nerabilities and unpatched vulnerabilities reported by OSS-Fuzz.
Each detected vulnerability comes with an exploit input that re-
sulted in a crash from sanitizers (e.g., AddressSanitizer [19], Memo-
rySanitizer [20]), and the crash report generated by the sanitizer. On
588 real-world historical vulnerabilities from a previously curated
dataset [31], CODEROVER-S can repair 61.1% of these vulnerabili-
ties by resolving the crash from the exploit input, using 03-mini
as the backend LLM. When switching to gemini-2.5-flash as the
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backend LLM, the efficacy further improved to 71.8%. Our ablation
study shows that the newly introduced features such as the dy-
namic and static analysis augmentation improved the efficacy of
CoDEROVER-S by 5.1 percentage points. Beyond the benchmark,
we also evaluated CODEROVER-S in repairing unpatched real-world
vulnerabilities reported by OSS-Fuzz in open-source projects. We
curated a dataset of 45 vulnerabilities that have been reported and
disclosed to the public, but not yet patched by the open-source
project maintainers. CODEROVER-S generated plausible patches for
73.3% of the unpatched vulnerabilities, demonstrating that its effi-
cacy can generalize from benchmarks to real-world deployment. We
further conducted manual correctness analysis of the patches and
submitted several patches to their corresponding project reposito-
ries. At the time of writing, five patches have already been merged
into four different projects.
In summary, our contributions are as follows:

o We explore the feasibility of adapting general-purpose LLM pro-
gramming agents for the repair of security vulnerabilities. We
integrate call graph information and type-based analysis to pro-
vide richer context for LLM agent-based vulnerability repair, re-
sulting in improved patch quality. Our approach is implemented
as a new agent CODEROVER-S which is specialized for security
vulnerability repair.

e We conduct an empirical study on the use of LLM agents to repair
real-world security vulnerabilities identified by the industrial
fuzzing service OSS-Fuzz. Our findings on existing benchmarks
indicate that leveraging LLM agents is a promising approach for
security vulnerability remediation.

e We conduct the first study of using LLM agents to repair un-
patched vulnerabilities reported by OSS-Fuzz. Our results indi-
cate that LLM agents’ efficacy in producing plausible patches
generalizes beyond benchmark instances to unpatched vulnera-
bilities in the wild. Furthermore, we demonstrate the potential of
integrating agent-generated patches into software projects and
deploying agent-based vulnerability remediation.

2 Background

We discuss background on the OSS-Fuzz project and LLM agents
for software engineering.

2.1 Overview of OSS-Fuzz project

Fuzz testing [6] is a popular method for detecting software secu-
rity vulnerabilities, via a biased random search over the domain
of program inputs. Launched by Google in 2016, OSS-Fuzz is an
open-source initiative designed to continuously detect security vul-
nerabilities across more than 1,250 open-source software projects.
The participating projects provide a fuzzing harness to test spe-
cific API functions. OSS-Fuzz monitors the reliability of software
projects’ repositories by continuously testing them with a wide
range of fuzzers (e.g., AFL++ [12], libfuzzer [35], Honggfuzz [21])
and sanitizers (e.g., AddressSanitizer [19] and UndefinedBehavior-
Sanitizer [41]). It automatically reports any crashes identified by
the fuzzers and periodically verifies whether the project has re-
solved the reported issues. As of May 2025, the OSS-Fuzz cluster
has discovered over 13,000 bugs across all projects. On average, OSS-
Fuzz has reported 22 bugs for each participating project, with some
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projects such as ffmpeg having over 400 bugs reported. In this work,
we focus on vulnerability remediation for C/C++ vulnerabilities
detected by OSS-Fuzz.

2.2 LLM Agents for Software Engineering

Recent advances in Large Language Models’ (LLMs) context win-
dows have significantly improved their ability to process complex
text sequences. This enhancement, combined with their capacity for
task planning, has led to the development of agent-based systems
designed to tackle a broad spectrum of problems. One area where
notable success was demonstrated is software engineering. Here,
an agentic system is provided with a natural language description
of a task, such as issue descriptions in software repositories like
GitHub. The issue can describe a bug or new features to be added
to a codebase. To solve the issue, the LLM can invoke external tools,
allowing it to interact with the environment and gather more data
before presenting a solution in the form of a patch. These tools
encompass actions fundamental to software engineering, such as
Abstract Syntax Tree (AST) search, e.g., getting a function or class
definition, file system navigation, and executing commands such
as compiling the project or running the test suite. By integrating
such tools, the agent can analyze the codebase, invoke tools to
gather additional information about the failure, and make modifi-
cations while keeping track of the original task. Examples of LLM
agents for software engineering include AUTOCODEROVER [49],
SWE-AGENT [45], REPAIRAGENT [5], and AGENTLESs [44]. Although
many software engineering agents have been proposed, few stud-
ies have investigated their adaptation for security vulnerability
repair. Furthermore, to the best of our knowledge, no prior work
has conducted a large-scale, systematic study of LLM agents for
remediating vulnerabilities reported by industrial bug detection
services such as OSS-Fuzz.

Significance. Repairing vulnerabilities detected by fuzzing is
vital for enhancing software security and reliability, as evidenced
by the efforts from both software engineering research [8, 14, 48]
and industry [28]. According to a recent study by Mei et al. [31],
the number of vulnerabilities identified by OSS-Fuzz is growing
steadily despite the gap between reproducible vulnerabilities and
their fixes, posing a significant security risk. Furthermore, the ris-
ing number of unpatched vulnerabilities over time implies that
some vulnerabilities might not receive immediate attention. There-
fore, it is essential to propose reliable solutions for vulnerability
remediation.

3 CoODEROVER-S

To study whether LLM agents for general software engineering
tasks can be specialized for vulnerability remediation, we adapted
the open-source agent AUTOCODEROVER for security vulnerabil-
ity repair. In this section, we first provide an overview of Au-
TOCODEROVER, and subsequently discuss how we repurposed it for
vulnerability repair.

3.1 Agent for Issue Resolution

AuTOCODEROVER [49] is an LLM agent designed for software en-
gineering tasks like bug fixing and feature addition. It aims to
resolve software engineering issues in a realistic setup, where only
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Figure 1: Workflow of AUTOCODEROVER for issue resolution.
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a natural-language description of the issue/requirement is available.
One such setup is GitHub issues, in which users submit bug reports
or feature addition requests to a software project.

Figure 1 illustrates the workflow of AUTOCODEROVER in resolv-
ing GitHub issues. Given a codebase C and a natural-language
(NL) issue report R, AUTOCODEROVER autonomously produces a
patch that aims to resolve the issue described in R. From the is-
sue report R, AUTOCODEROVER begins the main loop with context
retrieval and reproducer generation. Since an issue typically only
contains NL descriptions and no executable test to reproduce the
issue, AUTOCODEROVER first attempts to generate a candidate re-
producer test for the given issue. This reproducer test serves as an
additional specification for the patch generation later on. Other
than the reproducer test, AUTOCODEROVER also starts the context
retrieval stage from the issue report R. The goal of context retrieval
is to extract code snippets relevant to the issue R from a large
codebase, enabling the LLM to better understand the issue in re-
lation to the code. AUTOCODEROVER performs context retrieval
by designing a set of program structure-aware search tools (such
as search_class(...), search_method_in_class(...)), and al-
lowing the LLM to interact with a local codebase through these
tools. For example, given the example issue shown in Figure 2a,
the LLM would likely invoke the tool search_class("Colorbar")
to obtain more context about this class. Upon receiving this tool
invocation, the backend of AuTOCoODEROVER searches for the actual
code/signature of the class Colorbar from an Abstract Syntax Tree
(AST) representation of the codebase, and returns the code/signa-
ture back to the LLM. This process of tool invocation and code
context collection happens iteratively, until the LLM deems that the
current code context is sufficient for understanding the issue. At the
end of the context retrieval stage, the LLM decides on a few buggy
locations from the current code context. These buggy locations are
provided to a patch generation module to craft candidate patches
that aim to resolve the issue.

After a candidate patch is generated, AUTOCODEROVER attempts
to examine whether it resolves the issue in a review module. If the
patch is deemed to resolve the issue, the workflow ends with it being
the final patch. Otherwise, a natural-language “suggestion” on how
to improve the current patch is sent back to the patch generation
module to iteratively improve the patch. A natural way to decide
whether a patch resolves the issue is to execute the reproducer test
on the patched program. The review module in AuToCoDEROVER
takes into consideration the generated candidate patch, the repro-
ducer test, and the issue descriptions to determine whether the
patch successfully resolves the issue. The candidate patch is then
subject to iterative refinement between the patch generation and
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[Bug]: Colorbar with drawedges=True and extend='both’
does not draw edges at extremities #22864

Bug summary

When creating a matplotlib colorbar, it is possible to set drawedges to True which
separates the colors of the colorbar with black lines. However, when the colorbar is
extended using extend='both', the black lines at the extremities do not show up.

Code for reproduction

import matplotlib as mpl @
import numpy as np

import matplotlib.pyplot as plt

from matplotlib.colors import from_levels_and_colors

my_cmap = mpl.cm.viridis

bounds = np.arange(10)

nb_colors = len(bounds) + 1

colors = my_cmap(np.linspace(100, 255, nb_colors).astype(int))

my_cmap, my_norm = from_levels_and_colors(bounds, colors, extend='both')

(a) An example GitHub issue.!

==24==ERROR: AddressSanitizer: heap-buffer-overflow on address
0x60e000000293 ...

READ of size 1 at 0x60e000000293 thread T0O

#0 0xe7763d in q_memchr src/core/parser/../ut.h:422:7

#1 0xe771e8 in parse_quoted_param src/core/parser/parse_param.c:305:14
#2 0xe7175a in parse_param_body src/core/parser/parse_param.c:450:6
#3 0xe6b2d8 in parse_param2 src/core/parser/parse_param.c:496:13

#4 0xe6d274 in parse_params2 src/core/parser/parse_param.c:599:10

#5 Oxe6ce56 in parse_params src/core/parser/parse_param.c:561:9

#6 0xeb16b2 in parse_contacts src/core/parser/contact/contact.c:243:8

#7 0xe4a638 in contact_parser src/core/parser/contact/parse_contact.c:55:7
#8 0xe49405 in parse_contact src/core/parser/contact/parse_contact.c:84:6
#9 0x87e4f4 in parse_contact_header src/core/select_core.c:234:9

(b) Example of sanitizer report for Kamailio-380652.

Figure 2: Examples of GitHub issue and sanitizer report.

the review module. If no acceptable patches were generated after
several rounds of review, AuUTOCODEROVER goes back to the con-
text retrieval stage to re-discover buggy locations and a new set
of patches. Upon reaching a pre-defined numebr of rounds, Au-
TOCODEROVER selects the most promising patch generated so far
and returns it as the final output.

3.2 Agent for Security Vulnerability Repair

The AutoCoDEROVER workflow presented in Section 3.1 is designed
for resolving software engineering issues with natural language
descriptions. We next discuss the adaptation of AUTOCODEROVER
into the context of repairing vulnerabilities detected by fuzzing
campaigns such as in OSS-Fuzz. This adaptation results in an LLM
agent for security vulnerability repair, which we call CoDEROVER-S.

We observe various differences between resolving GitHub issues
and repairing vulnerabilities detected by fuzzers. Firstly, sanitizer
reports produced by fuzzers contains less elaboration and natural
language descriptions of the bug. Figure 2b shows an example of

!Issue #22864 from the matplotlib project. https://github.com/matplotlib/matplotlib/
issues/22864

2Bug #38065 from the Kamalio project, detected by OSS-Fuzz. https://bugs.chromium.
org/p/oss-fuzz/issues/detail?id=38065
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sanitizer-generated report. These auto-generated reports contain
the error type and a stack trace when executing the exploit input,
but does not contain natural language elaboration of the root cause
and context of this bug. In contrast, GitHub issue reports (as shown
in Figure 2a) are typically human-written and contain descriptions
on relevant program components and additional details of the issue.
As aresult, GitHub issue reports usually contain more diverse infor-
mation for LLM agent to start exploring the relevant components of
the software, while sanitizer reports focus more on a specific crash.
This difference highlights the need for providing additional context
to LLM agents when repairing vulnerabilities found by fuzzing.

In addition, vulnerabilities found by fuzzing are always accompa-
nied by a Proof-of-Vulnerability exploit input. In contrast, although
GitHub issues may contain steps for reproduction in the descrip-
tion, these steps are often not executable out-of-box. Since fuzzing
always provides reproducible exploit input, an LLM agent can em-
ploy more extensive retries in generating candidate patches, using
the exploit input as an oracle to validate the candidate patches.

Leveraging these differences, we propose CODEROVER-S, an LLM
agent built on top of AuTOCoDEROVER but tailored for security vul-
nerability repair. Figure 3 presents the workflow of CoDEROVER-S.
Compared to AUTOCODEROVER, CODEROVER-S generates additional
program context beyond the sanitizer report, so that more relevant
program locations can be explored by the agent. We generate addi-
tional program context through a combination of static and dynamic
analysis, which respectively provide static typing information and
dynamic call graphs to the LLM. Moreover, since there is an exploit
input available, CODEROVER-S directly leverages it as an oracle for
validating candidate patches during the Patch Review stage, instead
of attempting to generate a new reproducer input. After the Patch
Review stage, if no candidate patches pass the exploit input oracle,
an iteration of agent run concludes. In CoDEROVER-S, we construct
an iteration feedback that summarizes the locations and patches
explored in the current iteration, and provide this feedback to the
next iteration. CoDEROVER-S will output a final patch if the patch
passes the oracle in any iteration, or output the best patch so far
(based on heuristics such as whether the patch can be compiled).

In the remainder of this section, we elaborate on the novel fea-
tures of CODEROVER-S in greater detail.

3.2.1 Dynamic Call Graph. As shown in Figure 2b, the sanitizer
report records the stack trace when the program crashes due to the
manifestation of the bug. However, the crash stack trace is only
a small part of the entire execution and may not serve as a good
starting point for the LLM agent to gather context. For example,
the bug Kamailio-38065 shown in Figure 2b was patched by the
developer with the changes shown in Figure 4. The developer patch
modifies the skip_name function, which does not appear in the
stack trace but is invoked in other parts of the execution. It could be
challenging for the agent to use the sanitizer report as the starting
point of context retrieval and navigate to this function in the code-
base. To address this challenge, we take advantage of the available
exploit input, and generate a dynamic call graph from the execution
of the exploit input. This dynamic call graph is used to augment
the sanitizer report and provides more contextual information for
the agent to navigate the codebase.


https://github.com/matplotlib/matplotlib/issues/22864
https://github.com/matplotlib/matplotlib/issues/22864
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=38065
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=38065

Fixing Security Vulnerabilities with Agentic Al in OSS-Fuzz

Iteration

ICSE-SEIP ’26, April 12-18, 2026, Rio de Janeiro, Brazil

pTTer s Feedback €77"77rrmnistroossseooossssssssssiossesooseeon
==
= locations
== Context Retrieval > Ty’::‘,’"fo Patch Generation <------- ]
Codebase :
= Candidate :
= . patch
=] Add Dynamic
> Yes
Sanitizer Call Graph
bug report o
Patch Review ;es‘;'::’, — Yy > Workflow Ends
Ye
. =
=4
Exploit input
Input Main Loop

Figure 3: Workflow of CoDEROVER-S for repairing security vulnerabilities.

1 index 8c6ebdd6bb..345167022f 100644
2 --- a/src/core/parser/contact/contact.c
3 +++ b/src/core/parser/contact/contact.c
1 |@@ -147,10 +147,10 @@ static inline int skip _name(str= _s)
5 return 0;
}
7 - if (+p == ") {
s |+ if (sp == "t' || «p == ;') {
9 if (last_wsp) {
10 - _s->s = last_wsp;
11 _s->len -= last_wsp - _s->s + 1;
1 + _s—->s = last_wsp;
13 }
14 return 0;
15 }

Figure 4: The developer’s patch for fixing Kamailio-38065.°

To construct this dynamic call graph, we instrument the buggy
program during compile time to insert hooks at every function
entry and exit points. These hooks record the memory addresses of
the functions, as well as the calling relationships between callers
and callees. The instrumented program is then executed with the
exploit input to trigger the vulnerability. During the execution,
the function entry/exit hooks log an edge list comprising pairs
of function call addresses. Following this procedure, we map the
memory addresses to their original function names and source code
locations (e.g. filename and line number). In practice, we utilize
addr2line [16], gdb [17], and nm [18] to accomplish such mappings.

Figure 5 shows an example of the constructed dynamic call graph
for the bug Kamailo-38065. The red and blue-colored function calls
display the part of the dynamic call graph beyond the crash stack
trace. These function calls serve as additional starting points for
the agent to explore the codebase. To make the call graph available
to the LLM, we concatenate the list of additional function calls
to the sanitizer bug report as “other functions executed by the
bug-triggering input”. The additional list of function calls enriches
the auto-generated bug report from sanitizers, and provides more
context for code retrieval in CODEROVER-S.

3.2.2 Type-assisted Patching. The output of the context retrieval
stage in CODEROVER-S is a list of buggy locations (e.g. functions).
With the code snippets at the buggy program locations, the patch

trim_trailling

| skip_uri |—)| trim_trailling |

parse_contact_header
A4
Y
contact_parser

A4
parse_contacts

Y
parse_params

A4

<
parse_params2

| trim_leading |—)| trim_trailling |

trim_leading

Figure 5: An example of generated dynamical call graph. The
dashed lines (on the left) represent the order of function calls
on stack trace and the solid lines augment them to show the
actual dynamical call graph. The red colored function call is
the fix location selected by the developer.

generation stage attempts to craft patches that fix the vulnerability.
However, a generated patch may not always be compilable. This
is because the code of the buggy function itself may not contain
the necessary patch ingredient. For example, if the type definition
of a struct variable s is not within the buggy function, the LLM
may hallucinate some field names of s and use those names in the
patch, which will make the patch not compilable. A straightforward
solution is to provide the entire file content around the buggy
functions to the LLM. However, code files can be large in real-
world C/C++ projects, and may not fit in the context window of
the LLM. Even if the entire file fits within the context window, the
relevant type definitions might be absent, as they could be defined
in separate header files.

To ensure the relevant context is present for patch generation,
we introduce a type-assisted patch generation prompt that includes
all existing variables and their types in the scope of the buggy
function. To craft such a prompt, we parse the C/C++ source files
to capture critical language constructs, such as structs, classes,
typedefs, and enums. Using this information, we construct file
stubs to document the relationships between types, variables, and
function definitions. These file summaries also encapsulate function

Shttps://github.com/kamailio/kamailio/commit/20db418f1e35f31d7a90d7cabbd22ae989b7266c  signatures without any implementation details, so that a concise
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To ensure the patch is compilable, please use only existing variables at the
specified bug locations. Here’s a list of available variables and their types:

variables in method: parse_param_body
Variables declarations:
- name: p , type: param_tx*
typedef: param_t original_type:struct param ...
- name: _s , type: strx
typedef: str original_type:* json_key

- name: separator , type: char
- name: _c , type: pclass_t

typedef: pclass_t original_type:enum pclass ...
When writing your patch, make sure to:
1. Use variables in a way that’s consistent with their types.
2. Do not introduce imaginary variables that do not exist within the existing
code snippet or the provided context.
Write a patch for the vulnerability, based on the relevant code context. First
explain the reasoning, and then write the actual patch.
When writing the patch, remember the following:
- You don’t have to modify every location - just make the necessary changes.
- Other than the vulnerability to fix, your patch should preserve the program
functionality as much as possible. ...

Figure 6: Augmented repair prompt using type information.

summary on the relevant types can be provided to the LLM. These
specialized file summaries represent essential contextual knowledge
before patching. Our design enhances contextual understanding
prior to patching stage, thereby reducing compilation-related errors
and improving patch quality. An example patch generation prompt
for the example vulnerability Kamailio-38065 is shown in Figure 6.

3.2.3 lIteration Feedback. CODEROVER-S enters a retry loop if no
plausible patch was generated in the first iteration. Instead of start-
ing a retry from a fresh state, we integrated feedback from the
previous iteration before starting a retry. This is to encourage the
agent to explore diverse program locations and patches, so that it
does not repeatedly revisiting the same locations when retrying. At
the end of each iteration, we collect all the buggy locations from the
previous unsuccessful repair attempts and provide a summary to
the next iteration. Specifically, we prepare a prompt that contains
the used file names, function names, and unsuccessful patches, and
explicitly encourage the agent to explore alternative locations and
fix strategies at the beginning of the next iteration.

4 Evaluation

To study the effectiveness of automated tools in real-world vulner-
ability remediation, we evaluate various systems on real vulnera-
bilities detected by OSS-Fuzz. We aim to examine the efficacy of
LLM agents and learning-based vulnerability repair systems under
a realistic vulnerability repair scenario. Specifically, we would like
to answer the following research questions:

o RQ1: What is the efficacy of CODEROVER-S in repairing real-world
security vulnerabilities compared to other tools?

e RQ2: How do the new components in CODEROVER-S affect its
overall efficacy?

e RQ3: Can COoDEROVER-S repair new vulnerabilities found by
fuzzing that have not been patched before?

Zhang et al.

Benchmark in RQ1,2. In RQ1 and RQ2, we utilize the recently in-
troduced reproducible benchmark dataset, ARVO [31]. The ARVO
dataset contains 5,001 C/C++ vulnerabilities detected by OSS-Fuzz
across 273 projects, and each vulnerability comes with an environ-
ment to rebuild the buggy project and a bug-triggering exploit input.
Since a large number of vulnerabilities have been discovered by
0OSS-Fuzz in the past years and are contained in the ARVO dataset,
we randomly sampled a subset of 588 bugs with 99% confidence
level and margin of error of 5%. If any of the buggy programs took
too long to be compiled (i.e., more than 15 minutes), we randomly
sample new bugs to replace them. This is to ensure the builds during
the repair/validation process can finish within a reasonable amount
of time. The final set of 588 vulnerabilities from ARVO is used as our
dataset in RQ1-2. Figure 7 presents the distribution of vulnerabili-
ties in our dataset based on their Common Weakness Enumeration
(CWE) type. The most common CWE types are buffer overflows
(CWE-121 heap-based overflow and CWE-122 stack-based over-
flow), segmentation faults (CWE-476), use-after-free (CWE-416),
and use of uninitialized value (CWE-457).
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Figure 7: Vulnerability distribution in our dataset by CWE
types.

Metric. We evaluate the final patch generated by a tool by applying
it to the buggy program, compiling the patched program, and exe-
cuting the exploit input on the patched program. We then classify
the patches into the following categories: (1) No Patch (NP): A
patch is not generated by the tool. (2) Compilation error (CE): A
patch is generated, but caused compilation errors when building
the program. (3) Implausible (IP): The generated patch compiles
without errors, but the original exploit input still triggers the vul-
nerability. (4) Plausible (P): The patch compiles successfully, and
the original exploit input can no longer trigger the bug.

Baseline tools. We compare CODEROVER-S with two baseline tools:

(1) AGENTLESS [44]: AGENTLESS is a widely used LLM-based system
designed for program repair tasks. AGENTLEsS employs a fixed
three-phase workflow of localization, repair, and patch valida-
tion. The localization phase happens on multiple granularities,
such as classes, methods, and file names. The repair phase gen-
erates multiple patches at the identified fix locations and then
a patch validation phase is invoked to choose the final patch.
AGENTLESS was originally designed for Python codebases. To
use AGENTLESS for the C/C++ projects in OSS-Fuzz, we have
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Figure 8: Comparison of results from CODEROVER-S, AGENTLESS and VULMASTER. Results of CODEROVER-S and AGENTLESS
are obtained with 03-mini as the backend LLM. Results of CODEROVER-S with gemini-2.5-flash will be discussed in Section 4.2.

re-implemented the project structure generation, class/function
parsing, and edit location mapping for C/C++. For patch valida-
tion/selection, since there is an exploit input available for each
vulnerability, we use the following rule to select the final patch:
A plausible patch is strictly preferred to implausible one, and an
implausible patch is strictly preferred to the one with compilation
error. If there are multiple plausible patches, the first one is
chosen as the final patch.

(2) VULMASTER [51]: VULMASTER is a learning-based vulnerabil-
ity repair tool. VULMASTER finetunes a CodeT5 model using
vulnerability repair data such as CWE identifiers, vulnerabil-
ity descriptions, exemplar repairs and the vulnerable program
fragment to be repaired. Learning-based vulnerability repair
tools like VULMASTER usually assume patch locations (e.g., state-
ment/expression) to be given. To use VULMASTER in a realistic
vulnerability repair scenario, we employ the standard Spectrum-
based Fault Localization (SBFL) to obtain a few candidate fix
locations, and run VULMASTER over these locations. This SBFL
process takes in the exploit input as the failing test, and other
non-crashing inputs generated from the OSS-Fuzz fuzzing cam-
paign as the passing tests, and computes a list of suspicious
locations using the Ochiai metric [1]. We use the top-five suspi-
cious locations (line-level) from SBFL as the fix locations, and
use VULMASTER to generate a patch at each of these locations.
Since the final trained model of VULMASTER was not publicly
released, we follow VULMASTER authors’ suggestions to fine-
tune a CodeT5 checkpoint using the same training dataset in
the original paper. Since there are multiple patches produced
(one at each location), we select the final patch by following the
same process as that in AGENTLESS.

For each vulnerability, the inputs to CODEROVER-S and AGENT-
LESS are:

(1) An exploit input that triggers the vulnerability.
(2) The sanitizer-generated bug report for this vulnerability.

For VULMASTER, we follow its original setup [51] and give it the
following inputs:

(1) CWE identifier extracted from the sanitizer-generated report.

(2) Afew exemplar fixes for the corresponding CWE type, extracted
from the CVEFixes dataset [4].

(3) The function containing the fix location identified from SBFL.

For agent systems (CODEROVER-S and AGENTLESS) used in our
evaluation, we used the OpenAl 03-mini as the backend LLM in
RQ1. For CoDEROVER-S, we set the maximum number of feedback
iterations to be three.

4.1 ROQ1: Repair Efficacy

In this RQ, we evaluate the efficacy of CODEROVER-S, AGENTLESS,
and VULMASTER in generating plausible patches on the ARVO
dataset.

Results. The pie charts in Figure 8 provide a comparative analy-
sis of the patches for the three systems. All three charts categorize
patches based on the aforementioned criteria, which are plausible
(P), implausible (IP), compilation errors (CE), and No Patch (NP). As
shown in the left figure, CODEROVER-S generated plausible patches
for 61.1% of the vulnerabilities, showing that it can plausibly fix a
large proportion of vulnerabilities with 03-mini as the backend LLM.
For the other 29.3% of the vulnerabilities, CODEROVER-S generated
compilable but implausible patches. The non-compilable patches
account for a low percentage of the dataset (1.5%), suggesting that
the agent can generated compilable patches to a large extent if it is
given sufficient code context and type information. For the remain-
ing 8.2%, CODEROVER-S did not generate a patch due to errors in
the code search or other exceptions happened during the execution.

In comparison, AGENTLESS generated plausible patches for fewer
bugs (39.0% versus 61.1% with CopDEROVER-S). This lower plausibil-
ity rate corresponds to higher rates of implausible patches (39.6%
versus 29.3% with CODEROVER-S) and non-compilable patches (19.0%
versus 8.2%). Furthermore, we examine to what extent plausible
patches generated from both tools overlap. As seen in Figure 9, the
overlap between CODEROVER-S and AGENTLESS is significant, with
most of the patches (84.3%) found by AGENTLESS also present in that
of CoDEROVER-S. Overall, we observe that CoDEROVER-S achieves
better efficacy than AGENTLESS in repairing security vulnerabilities.
To some extent, this is expected since CODEROVER-S is targeted
for security patching while AGENTLESs was designed for program
repair in general.

Unlike the agent systems that generated plausible patches for
around 39-61% of the vulnerabilities, VULMASTER could not gen-
erate plausible patches for most of the vulnerabilities. The results
from VULMASTER demonstrate that 63.6% of the vulnerabilities have
only non-compilable patches, the highest of all tools. In addition,
30.4% of the vulnerabilities do not have a patch that can be applied
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Figure 9: Venn diagram of plausible patches produced by
CopEROVER-S and AGENTLESS.

to the program. Only 5.8% of the vulnerabilities have an implausible
patch. Lastly, there is a single plausible patch, which is a function
call removal. This suggests that learning-based repair tools such
as VULMASTER is significantly less capable of generating plausi-
ble patches for vulnerabilities detected by OSS-Fuzz, compared to
LLM-based agents.

4.2 RQ2: Analysis of CODEROVER-S Results

In this section, we provide further analysis of patches generated by
CODEROVER-S.

Ablation Study. To assess the contribution of the newly introduced
features in CODEROVER-S to its overall efficacy, we conducted an
ablation study on the features described in Section 3.2. We evaluated
two ablation configurations:

(1) w/o Call Graph: Disables dynamic call graph generation (Sec-
tion 3.2.1) in CODEROVER-S.

(2) w/o Call Graph, Typing, Feedback: Disables dynamic call graph
generation (Section 3.2.1), type-assisted patching (Section 3.2.2),
and iteration feedback (Section 3.2.3). This configuration re-
moves all specialized features, reducing CODEROVER-S to an
agent comparable to AUTOCODEROVER.

We ran these configurations of CODEROVER-S on a randomly
selected 30% subset of the dataset used in RQ1 to reduce cost. In
addition to evaluating the effect of the new features, we also aimed
to examine whether the efficacy of CODEROVER-S generalizes to
different backend LLMs. To this end, we performed the ablation
experiments with gemini-2.5-flash and compared the results against
03-mini in RQ1.

The results of the ablation study are presented in Table 1. Com-
paring to the original CoDEROVER-S, removing all specialized fea-
tures (c.f. Row ‘w/o Call Graph,Typing,Feedback’) reduces the plau-
sible rate from 71.8% to 66.7%. Removing these features also in-
creased the proportion of non-compilable patches generated by the
agent (from 1.1% to 5.1%). When only the call graph component is
removed (c.f. Row ‘w/o Call Graph’), the proportion of ‘No Patch’
increases (7.9% -> 9.6%), whereas the proportion of ‘Implausible’
patches decreased (19.2% -> 17.5%). This result suggests that the
call graph primarily helps the agent generate candidate patches by
identifying more potential program locations to modify, but not
necessarily makes the patches plausible. Features such as typing
information and feedback play a more critical role in improving
the quality of generated patches, thereby increasing the plausible
rate. In addition, as shown in Figure 10, each configuration in the
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w/o Call Graph, Typing, Feedback w/o Call Graph

Figure 10: Venn diagram of plausible patches from the three
configurations in the ablation study.

ablation study uniquely addresses a number of vulnerabilities. Fur-
thermore, switching from 03-mini (released in January 2025) to
gemini-2.5-flash (released in June 2025) improves the plausibility
rate from 61.6% to 71.8%. As more advanced models are released,
the prospects for agent-based vulnerability remediation become
increasingly promising.

Patch Correctness. We have so far examined the plausibility of
patches generated by the agent. However, although a plausible
patch may prevent the program from crashing with the exploit
input, it is not necessarily correct, as it may not generalize to other
inputs. This issue is known as the patch overfitting problem [40] in
program repair. To evaluate the correctness of the plausible patches,
we performed a manual inspection of a large sample. We use two
criteria in our manual inspection: (1) whether the generated patch
is semantically equivalent to the patch written by developers, and
(2) whether we think the patch correctly fixes the vulnerability, re-
gardless of equivalence to the developer’s patch. For inspection, we
consider all plausible patches generated by CODEROVER-S (gemini-
2.5-flash) in RQ2. We excluded vulnerabilities without a reliably
labeled developer patch, as these lack a clear ground truth for as-
sessing semantic equivalence. In total, we manually inspected 88
vulnerabilities with agent-generated plausible patches.

Our manual inspection confirmed that 45.5% (40/88) of the plausi-
ble patches were correct. Agent-generated patches can be incorrect
for several reasons. Firstly, some patches only focus on fixing the
specific scenario demonstrated by the exploit input, but missed
other edge cases such as strings consisting solely of whitespace. Sec-
ondly, the agent-generated patches can introduce unnecessary pro-
gram logic changes that are unrelated to the vulnerability. We fur-
ther compared the plausible patches against the developer patches,
and identified 14.8% (13/88) of the agent-generated patches were
semantically equivalent to the developer patch. Non-equivalent
but correct cases typically occur when the agent-generated patch
resolves the vulnerability directly, whereas the developer patch
fixes the issue by rejecting invalid or problematic inputs earlier in
the execution. A vulnerability can usually be fixed in multiple ways
- a patch that is not semantically equivalent to the developer patch
can still be correct, as shown from our manual inspection.

4.3 RQ3: Repairing Unpatched Vulnerabilities

In addition to evaluating CODEROVER-S on repairing known vul-
nerabilities from the ARVO dataset, we further evaluated its effec-
tiveness in repairing unpatched vulnerabilities. Unpatched vulner-
abilities refer to those detected by OSS-Fuzz, reported to project
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Table 1: Results of Ablation Study. The main results are obtained with gemini-2.5-flash as the backend LLM. Results with
03-mini on the same set of vulnerabilities are shown as reference.

Tool Configuration LLM Plausible Implausible Compilation Error No Patch
CoDEROVER-S- w/o Call Graph, Typing, Feedback  gemini-2.5-flash 66.7% 17.5% 5.1% 10.7%
CopEROVER-S- w/o Call Graph gemini-2.5-flash 70.1% 17.5% 2.8% 9.6%
CODEROVER-S (Full) gemini-2.5-flash 71.8% 19.2% 1.1% 7.9%
CODEROVER-S (Full) 03-mini 61.6% 32.6% 1.7% 4.1%

No plausible patch:
12

Patch deemed
incorrect by us: 21

Vulnerability already
fixed before we submit
patch: 3

Vulnerability fixed by another human-written patch: 2

No response as project is not actively maintained: 2

Patch deemed as
correct by us: 12

Agent found plausible
patch: 33

Total: 45

Patch submitted to

project maintainer: 9 Patch merged by project maintainer: 5

Figure 11: Results of CODEROVER-S on 45 unpatched vulnerabilities detected by OSS-Fuzz.

maintainers, publicly disclosed, but not yet patched. To construct
this dataset, we collected issues from the OSS-Fuzz issue tracker [22]
which were disclosed between January and April 2025 that remained
unpatched at the time of our experiment. We then excluded vulner-
abilities that (1) could not be reproduced in our environment, and
(2) belong to the projects not implemented in C/C++. Finally, we
obtained a dataset of 45 unpatched vulnerabilities across 28 projects
for RQ3. We applied CopEROVER-S on this dataset of unpatched vul-
nerabilities to generated plausible patches, and conducted manual
inspection similar to that in RQ2 to determine whether the plausible
patches are correct. Because these vulnerabilities had not yet been
patched, we submitted agent-generated patches that we judged
to be correct to the corresponding project repositories, enabling
remediation and helping to reduce the window of exposure.

Results. Figure 11 summarizes the results of this study. CODEROVER-
S produced plausible patches for 33/45 (73.3%) of the vulnerabilities.
This high plausibility rate indicates that the efficacy of agents like
CoDpEROVER-S can extend beyond benchmark settings and general-
ize to real-world deployment. We manually inspected all plausible
patches and identified 12 of them as correct. These patches were
suitable for submission to the corresponding project repositories for
resolving the fuzzer-detected vulnerabilities. At the time of patch
submission, three vulnerabilities had already been patched indepen-
dently (i.e., patched between the time of dataset collection to patch
submission), thus we excluded them from the submissions. We sub-
mitted the remaining nine patches to their corresponding GitHub
or GitLab project repositories by opening a Pull Request (PR). In
each PR, we explicitly disclosed that the patches were generated
by an LLM agent, and they aim to address vulnerabilities detected
by OSS-Fuzz. Of the nine submitted patches, five have already
been merged by project maintainers into four different projects:
Assimp [30], Fluent Bit [3], LibTIFF [36], and ReadStat [43]. The
remaining four patches were not merged for the following reasons:
(1) two vulnerabilities were independently fixed by human-written
PRs submitted by other developers, or (2) the maintainers had not
yet processed the PRs (with the master branch most recently up-
dated in December 2024). The successful acceptance and integration

of these agent-generated patches demonstrate their high quality
and highlight the strong potential of LLM agents for automated
vulnerability remediation.

Reducing manual effort. While the process from fuzzer reports to
agent-generated patch submission is largely automated, assessing
the correctness of the plausible patches still remains a manual task.
This step is essential to prevent developers from spending time
reviewing a large number of incorrect patches. To reduce man-
ual efforts in assessing plausible patches, we further investigated
whether an LLM-as-a-judge [24] approach could be employed to
automatically assess the correctness of plausible patches. We note
that the aim of this study is to understand the feasibility of such an
approach and to highlight future research directions, rather than
to propose a sophisticated LLM-as-a-judge method.

Our study was conducted as follows. For each vulnerability and
its plausible patch, we constructed a context consisting of:

o The sanitizer report.

e The plausible patch.

o File contents of all files modified by the plausible patch.

o 50 lines of surrounding code for each line that appeared in the
crash stack trace.

We then provide an LLM with this context and the instructions
describing the vulnerability repair scenario and the differences be-
tween plausible and correct patches. The LLM is tasked to produce
a binary decision on whether the patch is correct and its reasoning.
We used our manual inspection results as the ground truth and
evaluated Sonnet-4 and GPT-5 (with different reasoning efforts)
with this LLM-as-a-judge approach.

The results are presented in Table 2. Overall, Sonnet-4 outper-
forms GPT-5 in terms of F1-score (0.73 versus 0.52-0.57) and ac-
curacy (0.73 versus 0.61-0.67). However, both models exhibit rela-
tively low precision, ranging from 0.47 to 0.57. This indicates that
several incorrect patches would be wrongly classified as correct
when using LLM as a judge. Despite this low precision, Sonnet-4
demonstrates promising potential: it correctly identified all the true
positive patches (TP=12), and mainly suffers from false positives.
There is potential for improvement through fine-tuning the LLM or
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Table 2: Performance of LLM-as-a-judge in determining patch
correctness.

LLM TP FP TN FN ‘ F1 Prec. Recall Acc.
GPT-5 (low) 7 8 13 5 0.52 0.47 0.58 0.61
GPT-5 (medium) 7 6 15 5 0.56 0.54 0.58 0.67
GPT-5 (high) § 8 13 4 |057 050 067  0.64
Sonnet-4 12 9 12 0 0.73  0.57 1.00 0.73

integrating test-based patch correctness assessment methods [42] to
reduce false positives. In summary, this study reveals that there is a
substantial gap in using LLMs as judges to automatically distinguish
correct patches from plausible but incorrect ones, highlighting a
promising direction for future research.

5 Related Works

Automated Program Repair (APR) techniques [23] seek to repair
faulty programs by automatically generating patches for developers.
In this section, we discuss APR for security vulnerabilities based
on program analysis, machine learning, and LLMs, respectively.

5.1 Program Analysis based Approach

A wide range of analysis-based approaches have been explored to re-
pair software vulnerabilities [14, 26, 48]. SenX [26] repairs program
vulnerabilities using pre-defined safety properties and techniques
such as access range analysis and loop cloning. ExtractFix [14] em-
ploys crash-free constraints to bootstrap the repair process. It first
infers crash-free constraints for the given vulnerability, which are
then propagated to the fix location and used to synthesize patches.
VulnFix [48] employs a counter-example guided inductive inference
approach to construct patch invariants at potential fix locations, and
generates patches based on the invariants. Analysis-based vulnera-
bility repair approaches often ground patch generation based on
properties or constraints, which gives guarantees to the generated
patches. However, the analysis involved can be resource-intensive
and requires complex environmental setups [29].

5.2 Machine Learning based Approach

Machine learning (ML) based APR formulates the repair problem as
neural machine translation (NMT) which translates buggy code to
fixed code. General-purpose ML-based APR [9, 27] trains a model
with sequence-to-sequence learning on datasets consisting pairs of
buggy and fixed programs. Beyond general-purpose repair tools,
several ML-based approaches have been proposed for repairing
security vulnerabilities. VRepair [8] is a vulnerability repair tool
that is based on transfer learning. It is first trained on a large bug fix
corpus, and then finetuned on a smaller vulnerability fix dataset. In-
stead of training a model and adapting it to vulnerability repair with
transfer learning, VulRepair [13] finetunes a pre-trained CodeT5
model for repairing vulnerabilities. VulMaster [51] is a recently
proposed tool that integrates diverse information such as code
structure and expert knowledge for vulnerability repair, and it is
studied in our work.
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5.3 LLM-based Approach

Our work is closely related to research on LLM-based vulnera-
bility repair. Pearce et al. [34] investigate the use of code LLMs
for zero-shot vulnerability repair, showing that LLMs can gener-
ate fixes when given a carefully constructed prompt. Beyond the
zero-shot setting, various prompting strategies have been explored
for vulnerability repair. APPATCH [32] employs adaptive prompt-
ing and vulnerability semantics reasoning to suggest bug fixes.
San2Patch [29] utilizes Tree of Thought prompting to explore mul-
tiple locations and patches at each step, enabling a diverse search
of potential solutions. Concurrent with our work, PatchAgent [46]
and WilliamT [50] propose agentic approaches for vulnerability
repair. PatchAgent [46] integrates various interaction optimizations
into an LLM agent to mimic human expertise in vulnerability repair.
WilliamT [50] introduces a template-guided patch generation ap-
proach using LLM to repair vulnerabilities at the crash site instead
of the root cause. In contrast, our work focuses on adapting an
existing agent designed for issue resolution to vulnerability repair
by incorporating additional program analysis, such as dynamic call
graphs and type information.

6 Perspectives

Automated program repair technologies typically involve search,
semantic reasoning and machine learning to automatically rectify
bugs and vulnerabilities. Typically such techniques are driven by a
given test-suite as an indicator of correctness, and hence are diffi-
cult to apply for security vulnerabilities where only one test (the
exploit) may be available. Recent emergence of Large Language
Models (LLMs) have put the focus on fixing “issues” where natural
language bug reports may be used to produce rectifying program
modifications via LLM agents. In this work, we have demonstrated
the feasibility of using a repurposed LLM agent CODEROVER-S
for rectifying security vulnerabilities found by continuous fuzzing
taken from the widely used OSS-Fuzz infrastructure [33]. The main
experience gained points us to the feasibility of using LLM agents
as back-ends to fuzzers for zero-day patching of security vulnerabil-
ities. We demonstrated that full software protection from detection
to repair is feasible with fuzzers and LLM agents, and there are fu-
ture research potentials in patch correctness assessment to further
improve the degree of automation.
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